Extensions 1→N→G→Q→1 with N=C22xD15 and Q=C2

Direct product G=NxQ with N=C22xD15 and Q=C2
dρLabelID
C23xD15120C2^3xD15240,207

Semidirect products G=N:Q with N=C22xD15 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22xD15):1C2 = C2xD60φ: C2/C1C2 ⊆ Out C22xD15120(C2^2xD15):1C2240,177
(C22xD15):2C2 = D4xD15φ: C2/C1C2 ⊆ Out C22xD15604+(C2^2xD15):2C2240,179
(C22xD15):3C2 = C2xC15:7D4φ: C2/C1C2 ⊆ Out C22xD15120(C2^2xD15):3C2240,184
(C22xD15):4C2 = C2xC3:D20φ: C2/C1C2 ⊆ Out C22xD15120(C2^2xD15):4C2240,146
(C22xD15):5C2 = C2xC5:D12φ: C2/C1C2 ⊆ Out C22xD15120(C2^2xD15):5C2240,147
(C22xD15):6C2 = D10:D6φ: C2/C1C2 ⊆ Out C22xD15604+(C2^2xD15):6C2240,151
(C22xD15):7C2 = C22xS3xD5φ: C2/C1C2 ⊆ Out C22xD1560(C2^2xD15):7C2240,202

Non-split extensions G=N.Q with N=C22xD15 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22xD15).1C2 = D30:3C4φ: C2/C1C2 ⊆ Out C22xD15120(C2^2xD15).1C2240,75
(C22xD15).2C2 = D30:4C4φ: C2/C1C2 ⊆ Out C22xD15120(C2^2xD15).2C2240,28
(C22xD15).3C2 = C2xD30.C2φ: C2/C1C2 ⊆ Out C22xD15120(C2^2xD15).3C2240,144
(C22xD15).4C2 = C2xC4xD15φ: trivial image120(C2^2xD15).4C2240,176

׿
x
:
Z
F
o
wr
Q
<