Extensions 1→N→G→Q→1 with N=C22×D15 and Q=C2

Direct product G=N×Q with N=C22×D15 and Q=C2
dρLabelID
C23×D15120C2^3xD15240,207

Semidirect products G=N:Q with N=C22×D15 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22×D15)⋊1C2 = C2×D60φ: C2/C1C2 ⊆ Out C22×D15120(C2^2xD15):1C2240,177
(C22×D15)⋊2C2 = D4×D15φ: C2/C1C2 ⊆ Out C22×D15604+(C2^2xD15):2C2240,179
(C22×D15)⋊3C2 = C2×C157D4φ: C2/C1C2 ⊆ Out C22×D15120(C2^2xD15):3C2240,184
(C22×D15)⋊4C2 = C2×C3⋊D20φ: C2/C1C2 ⊆ Out C22×D15120(C2^2xD15):4C2240,146
(C22×D15)⋊5C2 = C2×C5⋊D12φ: C2/C1C2 ⊆ Out C22×D15120(C2^2xD15):5C2240,147
(C22×D15)⋊6C2 = D10⋊D6φ: C2/C1C2 ⊆ Out C22×D15604+(C2^2xD15):6C2240,151
(C22×D15)⋊7C2 = C22×S3×D5φ: C2/C1C2 ⊆ Out C22×D1560(C2^2xD15):7C2240,202

Non-split extensions G=N.Q with N=C22×D15 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22×D15).1C2 = D303C4φ: C2/C1C2 ⊆ Out C22×D15120(C2^2xD15).1C2240,75
(C22×D15).2C2 = D304C4φ: C2/C1C2 ⊆ Out C22×D15120(C2^2xD15).2C2240,28
(C22×D15).3C2 = C2×D30.C2φ: C2/C1C2 ⊆ Out C22×D15120(C2^2xD15).3C2240,144
(C22×D15).4C2 = C2×C4×D15φ: trivial image120(C2^2xD15).4C2240,176

׿
×
𝔽